1 /*
2 Copyright (c) 2019- Ferhat Kurtulmuş
3 Boost Software License - Version 1.0 - August 17th, 2003
4 Permission is hereby granted, free of charge, to any person or organization
5 obtaining a copy of the software and accompanying documentation covered by
6 this license (the "Software") to use, reproduce, display, distribute,
7 execute, and transmit the Software, and to prepare derivative works of the
8 Software, and to permit third-parties to whom the Software is furnished to
9 do so, all subject to the following:
10 The copyright notices in the Software and this entire statement, including
11 the above license grant, this restriction and the following disclaimer,
12 must be included in all copies of the Software, in whole or in part, and
13 all derivative works of the Software, unless such copies or derivative
14 works are solely in the form of machine-executable object code generated by
15 a source language processor.
16 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
19 SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
20 FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
21 ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 DEALINGS IN THE SOFTWARE.
23 */
24 
25 module measure.ellipsefit;
26 
27 import std.stdio;
28 import std.math;
29 import std.range;
30 import std.algorithm;
31 import std.algorithm.searching;
32 
33 import measure.types;
34 import measure.regionprops;
35 import measure.eigen;
36 
37 // gives exact results of matlab
38 Ellipse ellipseFit(XYList xylist)
39 {
40     const double meanX = xylist.xs.mean;
41     const double meanY = xylist.ys.mean;
42     
43     auto cov = covNx2(xylist.xs, xylist.ys);
44 
45     auto eigSolver = new Eig(cov);
46     auto V = eigSolver.getV();
47     auto lambda = eigSolver.getD();
48     
49     auto lambda_d = lambda.diag();
50     foreach(ref val; lambda_d) val = 4*sqrt(val);
51 
52     const double minorAxisLength = minElement(lambda_d);
53     //const auto minor_idx = minIndex(lambda_d);
54     const double majorAxisLength = maxElement(lambda_d);
55     auto major_idx = maxIndex(lambda_d);
56     
57     
58     double[2] major_vec = [V[1, major_idx], V[0, major_idx]] ;
59     
60     double orientation;
61     if (majorAxisLength == minorAxisLength)
62       orientation = 0;
63     else if (major_vec[1] == 0)
64       orientation = 90;
65     else
66       orientation = -(180/PI) * atan (major_vec[0] / major_vec[1]);
67     
68     return Ellipse(orientation, meanX + 1, meanY + 1, majorAxisLength, minorAxisLength);
69 }
70 
71 Mat2D!double covNx2(U)(U[] xs, U[] ys)
72 {
73     const auto npoints = xs.length;
74     const auto _npoints = ys.length;
75     
76     assert(npoints == _npoints, "array sizes are mismatch!");
77     
78     auto _cov = Mat2D!double(npoints, 2);
79 
80     const double meanX = xs.mean;
81     const double meanY = ys.mean;
82     
83     foreach(i; 0..npoints)
84     {
85         _cov[i, 0] = xs[i] - meanX;
86         _cov[i, 1] = ys[i] - meanY;
87     }
88     
89     auto rescov = _cov.transpose() * _cov;
90     double[2] d; d[0..$] = 1.0/12;
91     
92     auto covv = Mat2D!double.diagFromArray(d);
93     
94     for(size_t i = 0; i < covv.rows; i++)
95         for(size_t j = 0; j < covv.cols; j++)
96         {
97             rescov[i, j] = rescov[i, j] * (1.0/cast(double)npoints);
98             rescov[i, j] = rescov[i, j] + covv[i, j];
99         }
100     return rescov;
101 }
102 
103 // gives exact results of matlab and 1 ms faster :)
104 Ellipse ellipseFit2(Region rg) @nogc
105 {
106     const double center_x = rg.m10/rg.m00;
107     const double center_y = rg.m01/rg.m00;
108     
109     // central moments
110     const double a = rg.m20/rg.m00 - center_x^^2 + 1.0/12;
111     const double b = 2*(rg.m11/rg.m00 - center_x*center_y);
112     const double c = rg.m02/rg.m00 - center_y^^2 + 1.0/12;
113 
114     const double theta = 0.5*atan(b/(a-c)) + (a<c)*PI/2;
115 
116     const double axis1 = sqrt(8*(a+c-sqrt(b^^2+(a-c)^^2)))/2;
117     const double axis2 = sqrt(8*(a+c+sqrt(b^^2+(a-c)^^2)))/2;
118 
119     double orientation;
120     if (axis1 == axis2)
121         orientation = 0;
122     else
123     {
124         orientation = -(180/PI) * theta;
125         if (abs(orientation) > 90)
126             orientation = 180 - abs(orientation);
127     }
128         
129     return Ellipse(orientation, rg.bBox.x + center_x + 1, rg.bBox.y + center_y + 1, 2*axis2, 2*axis1);
130 }